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Esta aula apresenta o modelo basico de equilibrio geral dinamico de
uma economia fechada e sem governo (isto é, economia
autarquica).

Objetivo: o modelo explica como o nivel 6timo do produto é
determinado nessa economia autarquica, e como esse nivel 6timo
do produto é alocado entre consumo e investimento (isto &,
acumulacao de capital) ou, em outras palavras, entre consumo hoje
e consumo futuro.
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O modelo esta no cerne (“coracao”, “cornestone”, ponto de partida)
da macroeconomia moderna, sendo inclusive a base para a teoria
neoclassica de crescimento economico (Solow, 1956; Cass, 1965;
Koopmans, 1967).



Modelo de Ramsey-Cass-Koopmans

Quanto de sua renda uma nacao deve economizar
(Ramsey, 1928)?

Frank Ramsey (1928), jovem matematico, desenvolveu
um modelo dinamico para responder a esse
guestionamento.

O modelo de Ramsey foi revisitado por David Cass
(1965), Tjalling Koopmans (1965), bem como William
Brock e Leonard Mirman (1972), sendo conhecido
doravante por Modelo Ramsey-Cass-Koopmans.



Isola-se alguns aspectos centrais

N3o existe: governo, estrutura de
mercado (em particular, mercados
financeiros), moeda (todas as variaveis
estdo expressas em termos reais, mas
nao em termos nominais).

~

N3ao existe incertezas nem fontes de
persisténcia.

Muitas informacoes
relevantes estarao
faltando nesse
modelo:

Nao ha crescimento populacional, nem
progresso tecnologico.

o

A oferta de trabalho (mao-de-obra)
sera fixa, e o capital podera ser
instalado sem custos de ajustamento.

/




Por que comecar por um modelo
macroecondmico aparentemente tao irrealista
e simplista?




Motivacao

Existe uma boa tradicdo cientifica de comecar com
estruturas simples e bem compreendidas.
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A complexidade sempre pode ser adicionada, mas isso
precisa ser feito de forma disciplinada.
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Caso contrario, nés teriamos de confiar imediatamente
em métodos numéricos que sao rotineiramente utilizados
em modelos macroecondémicos de grande escala.
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Mas tais métodos so serao esclarecedores se o nucleo de
um modelo for suficientemente simples para que possa

v
ser compreendido.
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As aulas subsequentes abordarao extensoes
adicionardo recursos adicionais.




O modelo basico da economia centralizada,
apesar da sua simplicidade, tem sido muito
influente ao longo de décadas.




Interpretacoes do modelo basico

—

Modelo de Ramsey: Frank Ramsey (1928)
introduziu uma versao similar para estudar
questdes tributdrias. Por isso, o modelo é

frequentemente chamado de modelo de

Ramsey.

neoclassico

Economia de Robson Crusoé: refere-se apenas
a um unico individuo.

\_

Modelo-base para a teoria
do crescimento econdmico

Modelo do Planejador Social (Central): as
decisdes sao tomadas de maneira centralizada
por um planejador central, tomando-se como
dadas as preferéncias individuais (as quais sao
consideradas idénticas).

Preferéncias de “uma familia representativa” ou
“dinastia”.

Modelo do Agente Representativo: todos os
agentes econOmicos sao idénticos e atuam
como se fossem um sé individuo. Residentes e
firmas possuem os mesmos objetivos.

%




Questionamentos

Como o PIB é determinado?
Como o PIB é dividido entre consumo e
investimento?




Agente Funcao utilidade
representativo separavel ao
com vida infinita longo do tempo
Retornos Produtividade
constantes de| | marginal
escala decrescente
Economia .
Populacao
fechada e sem
constante (N)
governo




Ingredientes do modelo basico

e Produto agregado

Y4

e Consumo agregado (ou consumo do
agente representativo)

J

Y4

<
e Nivel de capital pré-determinado

disponivel para a producao

J

Y4

<
e Investimento bruto agregado realizado

Y4

no periodo )
<

e Poupanca agregada
_J




Considera-se variaveis em termos per capita

y.=Y/N

e Produto per capita

\

c,=C,/N

e Consumo per capita

\

k=K/N

e Capital per capita

\

i=1,/N

e Investimento bruto per capita

\

s.=S./N

e Poupanca per capita




Questionamentos

Para capturar as escolhas entre "consumo hoje"
e "consumo amanha" em uma economia
fechada, considere 3 equacdes basicas (formato
per capita):



Modelo consiste em 3 equacoes (per capita)

(1) Restricao de Recursos da Economia: Identidade da renda nacional
Ve =Ct + i (2.1)

Em que y; é o PIB. No periodo t, o produto da economia consiste no
consumo (c;) mais o investimento (i;). Isto &, o produto da economia é
usado para consumo e investimento.

A identidade nacional (2.1) também representa a restricdo de recursos da
economia. O produto total também é a renda total (produto = renda), que
pode ser gasta em consumo ou poupada:

Yt = Ct + St

A poupanca pode somente ser usada para financiar investimento: i; = s;,
Ou seja, poupanca é igual ao investimento.

Lembrem-se que poupanca € a renda nao consumida:

St = Ve — Ct = It



Modelo consiste em 3 equacoes

(2) Equacao (lei) do movimento do capital (ou dinamica do
estoque de capital):

Akpy1 = kep1 — ke = iy — Ok (2.2)

k; é o estoque de capital no periodo t.

Ak;, 1, que é a variacao do estoque de capital entre os periodo t + 1
e t, resulta do investimento bruto (i;) menos a taxa de depreciacdo
(6). Assume-se que uma proporc¢ado constante § € (0,1) do estoque
de capital existente se deprecia no periodo t.

Na producao, as firmas consomem apenas parte do estoque de
capital (6k;), onde § é a taxa de depreciacdo do capital no comeco
do periodo t.

O investimento i; € poupado como capital para o préximo periodo.



Modelo consiste em 3 equacoes

O capital pode ser acumulado ao longo do tempo através do
investimento em bens de capital, mas o estoque de capital se deprecia:

keyr — ke =1 — 6k = keyr = (1= 8ke + 1,

Isso implica que:

(i) O estoque de capital aumenta ao longo do tempo quando i; >
0k, (as novas compras de bens de capital excedem a deprecia¢ao dos
bens de capital existentes - ou seja, o investimento liquido é positivo).

(i) O estoque de capital diminui ao longo do tempo quando i; <
Ok, (investimento liquido negativo).



Modelo consiste em 3 equacoes

(3) Fungao de producao:
Ve = f(ke) (2.3)

No periodo t, a dotagao é o estoque de capital k;. As firmas
produzem o produto y; usando o capital k; como insumo.

Ideia: a fung¢ao de producao “neoclassica” f é tal que um
aumento de k aumenta a producao, mas a uma taxa
decrescente. A producao nesta economia é realizada por um
grande numero de empresas competitivas, usando apenas
capital.

Seja k > 0. Condic¢des de Inada (1964): f(k;) > 0, f(0) =
0,f'(k) >0, ef'"(k) <0

lim £'k) — 0 e lim £'(k) - oo



Modelo consiste em 3 equacoes

] k



O que dizem as condicoes de Inada?

4 )
Na origem ha ganhos de
produto Infinitos para
aumentar k;

\. _/

. *\/—\
Esses ganhos diminuem a
medida que k se torna maior;
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Eles eventualmente \ﬁ

desaparecem se k se torna

arbitrariamente grande.
. J




Produtividade Marginal do Capital

PMgk



Funcao de Producao Agregada

A funcdo de producdo agregada é expressa por: Y; = F(K;, N).

Na tradicao neoclassica, F tem retornos constantes de escala, isto €,
para qualquer variacao A de ambos os insumos, a funcao F satisfaz:

Yt — F(/’{Kt,/’{N) — AF(Kt, N) — AYt

A populacdo (N) é constante. Logo, assumindo A = 1/N, o produto per
capita satisfaz:

Yt F(Kt'N) Kt
Yt:N: N :F(_»_>:F(kt»1)5f(kt)

Em alguns livros-textos de macroeconomia avancada (por exemplo,
Wickens), podemos encontrar uma notacao alternativa para o produto

per capita: F (k1) = F(k;).



Restricao Dinamica de Recursos

Combinando as trés equacodes, tem-se que:

flk) =y:=>flk) =c,+iy=> f(k) =c + [kt+1 - (1 - 5)kt]

= f(ke) = ¢t + kepqr — ke + 6k = f(ke) = ¢ + (Akeyq + Sk¢) (2.4)

Como Ak;yq = ki1 — k¢, @ equagao (2.4) é a restricdo dinamica nao-linear de recursos da
economia. Dado o estoque inicial de capital (k, = dotagao inicial), a economia precisa escolher seu
nivel de consumo no periodo t (c,) e o capital no inicio do periodo t + 1 (k,,)-

O objetivo do planejador central € maximizar o consumo ou a utilidade derivada do consumo, mas
nao o produto.

ki1 =1 —68)k +1i;



Preferencias

O que os consumidores gostariam de fazer? Uma primeira tentativa:
maximizar o consumo no presente(c;). Segundo a equacdo (2.4),
percebe-se que o consumo pode ser definido como sendo o
produto da economia menos 0s recursos gastos no aumento do
capital

fke) = ¢ + (Akeyq + 6ke) = f(ke) = ¢ + keyq — ke + Sk
= f(ke) = ¢ + keyr — (1= 8k,

ce = f(ke) —key1 + (A —8)ke = f(ke) — kg1 + ke — 6k
¢t = f(ke) — (keyr — k) — 6k (2.4)

Maximizar o consumo significa zerar o estoque de capital amanha:
k;,,. Faz sentido isso? Se vocé consome hoje, a economia ira
acabar no periodo seguinte... Entao, como a familia representativa
escolhe o quanto vale a pena ter amanha versus o que se tem hoje
em termos de consumo?




Interpretacao da equacao (2.4)

( )

Considere um periodo inicial t = 0 com um dado valor pré-
determinado k, (que fixa o produto f(k,) no periodo t = 0).
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Suponha que exista alguma regra ou alguma regularidade que
nos diga para o valor dado de k, como determinar o nivel de

consumo ¢;. Isso implicitamente ira determinar k; .
—
-

Se nds usarmos a mesma regra novamente em t =1, nos
iremos encontrar ¢; €, implicitamente, k.

\
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Continuando essa ldogica recursiva para t = 2, 3, ..., nés
podemos derivar a sequencia inteira de “c” e “k” para o futuro

infinito, istoé: T — oo
k }
—
-

A equacao (2.4) é nao linear porque causa do termo f (k).




Qual é o nivel 6timo de consumo?

Nivel otimo
de consumo

Solucao no
longo prazo

Solucao no
curto prazo
(“ml’ope”)

Solucao da
Regra de
Ouro

Solucao

Otima




Preferencias

Dada a restricao dinamica derivada da equacao (2.4), nos
precisamos de algum critério ou objetivo a fim de determinar as
escolhas otimas de consumo. Duas respostas “naive” seriam:

(i) Resposta miope: uma escolha extrema seria inteiramente miope,
ou seja, dado k;,; = 0, para um dado valor k;, o nivel mais alto
possivel de ¢y no periodo t = 0 equivale a:

Cz)niope = f(ko) + (1 =)k,

Trata-se do nivel maximo de consumo que poderia ser obtido no
curto prazo.



Preferencias

No entanto, essa escolha implicaria k, = 0, ou seja,
nao é sustentavel (na verdade, implicaria producao
zero e consumo zero em todos os periodos futuros!)

Assim, o consumo miope nao pode ser o0timo em
nenhum sentido. Uma vez que k;;,; =0, todo o
consumo futuro sera igual a zero.

’)

Ou seja, trata-se uma “festa” hoje seguida de

“fome” amanha!



Possiveis escolhas para o consumo

Um cr
consumo devem ser sustentaveis no longo prazo, ou
seja, o consumo deve ser maximizado em cada

perioc

itério mais razoavel é impor que os niveis de

0.

Consid

eraremos duas alternativas: a chamada solucao

da regra de ouro e uma solucao 6tima.

A principal diferenca entre os dois conceitos de
solucao é que, na solucao otima, o consumo futuro
sera descontado, enquanto a regra de ouro ignora o
desconto.



1. Solucao da Regra de Ouro




Regra de Ouro — Estado Estacionario

4 )

A solucao da regra de ouro é
derivada a partir de um objetivo de
longo prazo:
N v,

-
(i) Essa solucao maximiza a
quantidade (constante) de consumo
per capita em cada periodo.
q W,
r v\/—\
(i1) ao fazer isso, trata o0s membros
de diferentes geracoes da mesma

forma ("regra de ouro").
\. J




Regra de Ouro — Estado Estacionario

Maximizar o consumo no periodo t equivale a maximizar a funcdo U(c;). Na
equacao (2.4), c, precisa satisfazer:

= fke) = keyr + (1= 8)ke  (2.5)

Essa equacao restringe as escolhas factiveis de consumo ao longo do tempo.

Para maximizar ¢, a economia precisa, no periodo t, consumir todo o produto
corrente f (k) mais o capital ndo depreciado (1 — 8)k; e kyyq = O.

O nivel maximo de consumo é que sustentavel no longo prazo pode ser
derivado ao impor uma condicao de estado estacionario na equacao (2.5).

O estado estacionario (ou o “longo prazo”) é uma situacao em que todas as
variaveis per capita sdao as mesmas (isto é, sdao constantes) em todos os
periodos subsequentes, isto é,¢c; =c*ek; =k, 1 =k*,t=1,2, ..

Em outras palavras, o estado estacionario € uma situacao onde todas as
variaveis sao constantes ao longo do tempo.



Regra de Ouro — Estado Estacionario

No longo prazo, o estoque de capital sera constante, e o
consumo de longo prazo é obtido da equacao (2.5)

como.:

¢t =fk) —k*+(1—8)k* =
¢t =fk*) —k* +k* —8k* = c* = f(k*) — 5k* (2.6)

Portanto, no longo prazo o consumo € o produto menos
a parcela do produto exigida para substituir capital
depreciado a fim de manter o estoque de capital

constante.



Equilibrio de longo prazo

No longo prazo, o consumo que mantém o estoque de capital
constante é dado por: c* = f(k*) — 6k* (2.6)

Se “amanha”, a variacao do estoque de capital é zero, entao
Akt+1 —_ it — 5kt = Akt+1 —_ 0 = it —_ 5kt

A equacao (2.6) implica que a variacao do capital (ou
investimento liquido) sera zero, isto é, o Unico investimento
realizado é aquele que substitui o capital depreciado, facilitando
um estoque de capital constante ao longo do tempo.



Questionamentos

O que a familia representativa precisara escolher
para equilibrar a economia?

Como a familia representativa ira maximizar o
consumo “amanha”?

Como se deve escolher de maneira otima o
consumo?

Qual é o valor de k* que maximiza o consumo?




Visando encontrar a solucao da regra de ouro, deve-se resolver o
seguinte problema de maximizacao:

max c* = F(k™)—0k™.

C.P.O.:

— F'(k*) =6 =0




Regra de Ouro — Estado Estacionario

O problema é escolher k para maximizar c. O estoque de capital da regra de ouro esta
implicitamente caracterizado pelas Condicdes de Primeira Ordem (CPO):

dac

=) =8=0=f'k) =6 (27)

Isso significa que a produtividade marginal do capital é igual a taxa de depreciagao
guando o consumo € maximizado no estado estacionario.

Trata-se da hipdtese de unicidade: o k* que resolve f'(k*) = § é Unico e o nivel de
consumo associado c¢* é dado por: c* = f(k*) — 6k*

Condicoes de Segunda Ordem (CSO) asseguram que k™ é um ponto de maximo (e ndo
um ponto de minimo) :

d%c

dk**

— f"(k*) <0



Regra de Ouro — Estado Estacionario

PMgk

O nivel maximo de consumo - a regra de ouro do
consumo - é obtido quando o produto marginal do
capital igual a taxa de depreciacao.

No ponto 1, se ha mais capital que se deprecia, no
equilibrio havera menos capital porque a sociedade
P SR 1 devera fazer um esfor¢go muito grande para manter o que
1 .
jatem.

No ponto 2, se ha capital que deprecia muito pouco,
pode-se sustentar em equilibrio um capital maior.




A Dinamica da Regra de Ouro

Nao ha disturbios (choques) na economia: como o
estoque de capital é constante, c* é sustentavel
indefinidamente.

Ha disturbios (choques) na economia: a economia se
torna dinamicamente instavel em {c*, k*}.

O que ocorreria se a economia tentasse manter o
consumo em seu nivel maximo c¢* mesmo quando o
estoque de capital se diferencie de k* devido a
existéncia de disturbios?
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Regra de Ouro — Estado Estacionario

Abaixo do ponto k*, consome-se menos do que o nivel de consumo da
regra de ouro. Mas a depreciacao sera menor, de modo que o estoque
de capital aumenta.

um aumento marginal em k resulta em um aumento em ¢, uma vez
que o ganho marginal da produgido, isto é, f'(k) excede o custo de
producao de substituicao do capital depreciado. Se os agentes ainda
guisessem consumir c*, o estoque de capital iria aumentar.

Acima do ponto k*, consome-se mais do que o nivel de consumo da
regra de ouro. Mas a depreciacao sera maior, de modo que o estoque
de capital diminui. “tem maquina que quebra e nao reposta, logo,
reduz o capital!”.

Um aumento marginal em k diminuiria ¢, uma vez que o ganho
marginal na producdo f'(k) é menor que o custo de producdo de
substituicao do capital depreciado. Se os agentes ainda quisessem
consumir c*, o estoque de capital iria diminuir.



Regra de Ouro — Estado Estacionario

(‘# + 5k# --------------

max ¢ =¢

5k# ______________ \

ot k

Figure 2.2. Total output, consumption, and replacement investment.



Regra de Ouro — Estado Estacionario

O nivel 6timo de consumo pode ser determinado a partir da
figura 2.2. A curva representa a funcao de producao, que

expressa o nivel de produto produzido pelo estoque de capital
k*.

A linha reta é o investimento 6k. A diferenca entre as duas linhas
é o consumo mais investimento liquido (acumulacao de capital):

f(k) — 6k =c+ Ak
Que é a equacao (2.5).

A diferenca maxima ocorre quando as linhas estao muito
afastadas. Isso acontece quando f'(k) = 4, isto é, quando a
inclinacao da tangente a funcao de producao [o produto marginal
do capital iguala a inclinacao da linha de depreciacao total, d].



Regra de Ouro — Estado Estacionario

Considerando a regra de ouro, o nivel 6timo do estoque
de capital no estado estacionario é aquele nivel que
maximiza o produto liquido, isto &, o produto liquido da
depreciacao do capital.

y"et = fke) - Ok,

c,+ ‘M‘}H

dcldk =F'(k)—0 =0
max ¢ = ¢ [--cm-ocooooo

F(k) -0k

k# k
Figure 2.3. Net output.



Regra de Ouro — Estado Estacionario

Na figura 2.3, a curva representa o consumo mais
investimento liquido (ou seja, produto liquido ou a
distancia vertical entre as duas linhas na figura 2.2)
e € plotada contra o estoque de capital.

Pontos acima da linha nao so atingiveis devido a
restricdo de recursos f (k™) — 0k™ = ¢ + Ak”

O nivel maximo de consumo mais investimento
liquido ocorre onde a inclinacdo da tangente € zero.
Neste ponto, o investimento liquido € igual a zero,

ouseja: f'(k*) —6 = 0.



| - Estatica Comparativa: aumento em 0

Lembre-se que a condicao de otimalidade de
primeira ordem f'(k*) =6  estabelece
somente uma dependéncia implicita de k~
em 0, isto é, ndo se pode diferenciar k™ em
relacdoao.

No entanto, como esta condicao de
otimalidade sera satisfeita para qualquer
valor exégeno 0, podemos escrevé-la como
uma identidade:

f'(k*(6))—6=0 (2.8)



| - Estatica Comparativa: aumento em 0

Diferenciando a equacao (2.8), tem-se:

ey (S5 ) 1= 0
/ dd B
Resultando em:
dk” B 1
ds _f”(k*)

<0 (2.9)

Interpretacdo: um aumento em 6 torna a
acumulacao de capital mais custosa, levando a
uma quedaem k.




Il - Estatica Comparativa: reacao de ¢* a uma mudanca

em o

Para respeitar a dependéncia implicita de k*em J, expresse (2.6)

comao.

c* = f(k*(8)) — 5k*(8)
Diferenciando c* em relagédo a §, tem-se:

de*  d|f(k*(8)) — 6k*(8)]
ds dé

*

dk
= [f' (k") = 8] ==~ k(6
=0

N —

=—k*(6) <0
Interpretacdo: um aumento em 6 leva também a uma reducdo em c”.




Estatica Comparativa: comentarios finais

Para derivar o0s resultados de estaticas
comparativas a partir de relacoes implicitas, tais
como f'(k*) = §, existirdo técnicas alternativas.

Em particular, pode-se usar a diferenciacao total
no equilibrio para se obter:

f'(k*) - dk = dé

Essa expressao pode ser rearranjada para
confirmar (2.9), isto é:

dk* _ 1 _ o
ds  f'"(k*)




Consideracoes finais

A macroeconomia moderna tenta basear a analise
em critérios de bem-estar microfundamentados,
consistentes com a otimizacao do comportamento
do consumidor representativo.

A analise da regra de ouro Iincorpora
cuidadosamente a restricao dindmica relacionada
a dinamica do estoque de capital...

... MMas nao se pronuncia sobre a existéncia de uma
medida de bem-estar individual que geraria a
solucao da regra de ouro.



Consideragoes finais

Em particular, a analise da regra de ouro pretende que o0s
individuos valorizem o consumo de hoje e o consumo de amanh3
da mesma forma.

Mas esta nao € uma suposicao satisfatoria, dada a impaciéncia
observada nas decisoes dos consumidores.

Este aspecto & captado pela chamada solucao 6tima (o que
significa que o critério de otimalidade corresponde a um objetivo
de bem-estar microfundamentado que incorpora a impaciéncia).



2. Solucgido Otima




O Problema de Otimizacao

Considere que o periodo representativo seja denominado
por t.

Considere que existe no periodo inicial t = 0 um estoque de
capital per capita pré-determinado: k,

Note que V, representa o valor presente das utilidades
correntes e futuras:

Ve = Xi=o ,BtU(Ct)

O consumo adicional aumenta a utilidade instantaneamente
(U;(c;) > 0), mas a taxas decrescentes (U/ (c;) <0).
Interpretacgao: a utilidade futura vale menos que a utilidade
corrente.



O Problema de Otimizacao

cllgl+ Ui(c) = o0

lim U!(c,) = 0

Cc—>0C0

Assume uma grande quantidade de familias idénticas e com
vida infinita e que tomam todos os precos como dados e
tém preferéncias.

Como as familias sao idénticas em suas preferéncias, sera
considerado no modelo uma unica familia representativa
(dinastia).



Solucao otima e 22 teorema do bem-estar

Aqui deriva-se a solucao de planejamento central que
também pode ser interpretada em termos de uma
alocacao de equilibrio competitivo devido ao segundo
teorema fundamental do bem-estar:

“toda alocacao eficiente de Pareto pode ser obtida
como um equilibrio competitivo de mercado”.

/




O Problema de Otimizacao

Na solucao 6tima, o valor presente da utilidade corrente (t)
e futura (t +s), V;, € maximizado sujeito a restricao dinamica
estabelecida. Assim, O planejador central se depara com o
seguinte problema de otimizacao intertemporal:

max V, = z BU(Cews)
(Cerskess) (2.10)
s.a. f(kiys) = Ceqs + kt+s+1 (1 —=08)kits

Em que k; > 0. O termo S =1/(14+6) é o fator de
desconto. A utilidade futura é descontada por esse fator
constante que satisfaz 0 < f < 1. O termo 6 > 0 é a taxa
de desconto social ou taxa de desconto temporal.



CondicOes necessarias

A funcao objetivo V; é aditivamente separavel, tornando
facil comparar utilidades entre periodos.

Define-se o Lagrangeano restrito para cada periodo pela
restricao de recursos:

Ly

— Z{,BSU(Ct+s) + At+s [F(kt+s) — Ct4s — kt+s+1 + (1 o S)kt+5]}

s=0

O termo A;,, € o multiplicador de Lagrange no periodo t +
s, isto &, s periodos a frente. O Lagrangeano & maximizado

com relacdo a {Ciyq, Kiysi1,Arys; S = 0}. Condicbes de
Primeira Ordem (CPO):



CondicOes necessarias

O multiplicador de Lagrange A;,.; mensura o valor sombra
de uma unidade adicional de renda no periodo t (em termos
de utilidade no periodo 0).

O Lagrangeano é maximizado com relacao as variaveis de
escolha {ciiq, Kitroi1, Arss; S = 0},

Condicoes de Primeira Ordem (CPO):



Condicoes de Primeira Ordem (CPO)
0L,
=02 B5U (Cip5) —Aips =0, s=0 (2.11)
0Ct4s
oL ,
akt; =0 = Apyslf'(kss) + 1= 8] — Ap45-1 =0, s > 0 (2.12)
0L,

OAtss

= 0= f(kers) = Ceps T hegser — (1 —8)kyss



Interpretacoes das CPO

CPO para o consumo. No nivel 6timo, o preco sombra de um
aumento no consumo no periodo s marginalmente iguala o ganho
de utilidade de um aumento marginal no consumo:

BU (crys) = Agas

Suponha se B°U’'(cs+s) > Asys. Nessa situacdo, valeria a
pena para o planejador central aumentar ¢;, ¢ dado que os
bens nesse periodo sao “baratos” em relacao a avaliacao
dos consumidores acerca do consumo desses bens.

Suponha se B°U'(cs4+5) < Asys. Nessa situagdo, ndo valeria
a pena para o planejador central aumentar ¢, ¢ dado que os
bens nesse periodo nao sao “baratos” em relacao a

avaliacao dos consumidores acerca do consumo desses
bens.



Interpretacoes das CPO

CPO para o capital. No nivel 6timo, o preco sombra de se aumentar
k:,s marginalmente iguala o produto marginal bruto do capital no
periodo t + s:

Apaslf ' (keys) + 1= 8] = Aeysq

Suponha que A;io_q1 > Apyslf ' (kiys) + 1 — 8], Valeria a
pena para o planejador central diminuir o ks, uma vez que
o valor descontado apresentado do produto marginal bruto
do capital amanha esta abaixo do preco de se aumentar
ligeiramente o estoque de capital hoje.

Suponha que A;ioq < Apyslf'(kers) + 1 — 8], Nao valeria
a pena para o planejador central diminuir o k;,. uma vez
qgue o valor descontado apresentado do produto marginal
bruto do capital amanha nao estara abaixo do preco de se
aumentar ligeiramente o estoque de capital hoje.



Condicao de Transversalidade

Como nao ha incerteza, este € um problema de previsao
perfeita. Lembre-se de que quando os agentes otimizam,
precisamos impor uma condi¢ao terminal que os impec¢a de
acumular dividas demais.

O planejador central enfrenta uma restricao similar, que é a
condicao de transversalidade:

lim ,BSU’(CHsz Kiyse1 =0 (2.13)

S—00 ~

At+s

N3ao se maximiza em relacao a k; pois assume-se que o
capital é pré-determinado no periodo t.



Condicao de Transversalidade

Suponha que haja um estoque de capital finito no tempo
t + s. Se consumido, isso daria uma utilidade descontada de

BoU(Cris)kess.

Se o horizonte de tempo fosse t + s, entao nao seria 6timo
ter qualquer capital deixado no periodo t 4+ s: ao invés
disso, o capital deve ser consumido.

Logo, como s = oo, a condicao de transversalidade fornece
uma condicao extra de otimalidade para problemas de
horizonte infinito intertemporais.



CPO (resumo) e Equacao de Euler

N3ao se maximiza em relacao a k; pois assume-se que o

capital é pré-determinado no periodo t. De (2.11), obtém-se
o multiplicador de Lagrange:

Atrs = BU (Cess)
De (2.12), teremos que:
Aepslf ' (Reys) +1 =681 = Aeq5-1  (2.14)

Por analogia, teremos essa outra expressao do multiplicador
de Lagrange:

Atys—1 = IBS_lU,(Ct+S—1)



Equacao de Euler

Considerando essa nova expressao do multiplicador de
Lagrange, combinando as CPO para consumo e capital, nos
podemos reescrever a equacao (2.14) da seguinte forma:

BU (cea)lf'(keys) +1 =81 = B57 U (cpg5-1), s> 0

Para s =1, a equacado acima pode ser reescrita como:

BrU' (crrDIf (k1) +1—6] = ,5:: U'(Crs1-1)
—1



Equacao de Euler

BU (cer )If '(keyr) +1—=6] =U'(ct)

O lado esquerdo da equacao acima € o custo de se
aumentar marginalmente o estoque de capital no periodo
s + 1 mensurado em termos de perda implicita de utilidade
marginal.

O lado direito € o beneficio de um estoque de capital
marginalmente maior no periodo s+ 1: marginalmente,
mais capital eleva os recursos no periodo s+ 1 por
|f'(kir1) + 1 — 6], que é traduzindo em utilidade marginal
do consumo U’ (c;).



Equacao de Euler

BU'(Cri1)
U'(ct)

[f"(kerr) +1=6] =1 (2.15)

A equacao (2.15) é conhecida por Equag¢ao de Euler. Trata-
se da equacao dinamica fundamental em problemas de
otimizacao intertemporal.

Essa equacao reflete a substituicao intertemporal do
consumo entre dois periodos consecutivos.



Equacao de Euler

O termo U'(cs+1)/U'(c;) é a inclinagdo de uma curva de

. . dcg . , . . ~
indiferenca , € 0 seu inverso é a inclinacao de
dct+1 dV =0
. . dCt+1
uma curva de indiferenca :
dce lgy=0

Em outras palavras, as expressdes acima tratam-se das taxas
marginais intertemporais de substituicao entre ¢; e ¢4, .

Assim, no nivel otimo, a taxa marginal de substituicao
intertemporalé igual ao produto marginal bruto do capital.



Interpretacao da Equacao de Euler

Considere o seguinte problema: Se reduzirmos ¢; em uma
pequena quantidade dc;, quanto maior deve ser ¢y, para
compensar enquanto deixamos V; inalterado?

Suponha que o consumo além do periodo t + 1 permanece
inalterado. Esse problema pode ser resolvido ao considerar
apenas dois periodos: tet+ 1.

Considere: V. = U(c;) + BU(cr41)



Interpretacao da Equacao de Euler

Ao tomar a diferenciacao total de /¢, e lembrando-se de que
V: permanece constante, implica que:

0 =dV; =dU; + BdUsq = U'(cr)dey + BU(cryq)dcryr.

Onde dc;,.1 representa uma pequena mudanga em Cg.1,
provocada ao se reduzir ¢;. Uma vez que se reduz c¢;,temos
dcy < 0.

A perda de utilidade no periodo t é definida por: U'(c;)dc;

A fim de que V; seja constante, isso sera compensado pelo
ganho descontado na utilidade BU'(¢c;41)dCs41.



Interpretacao da Equacao de Euler

Usando o Teorema da Funcao Implicita, o coeficiente da
curva de indiferenca no espaco (c; cry1 ) € denominado
taxa marginal de preferéncia temporal:

U'(cp)der + BU (ceq1)deryr =0

BU'(ctr1)deeyq = —U'(cp)dcy

dceyq _ U'(ct)
dcg LU (cti1)

(2.16)



Interpretacao da Equacao de Euler

Logo, € preciso aumentar c¢;,1 por meio de:
!/
U'(ct)

R TV R

As restricoes de recursos para os periodos t e t + 1 podem
ser escritas da seguinte forma:

kev1 = fke) + (1 =8k — ¢

Cev1 = f(kep1) —kpy + (1 —6)ky4



Interpretacao da Equacao de Euler

A restricao de recursos precisa ser satisfeita em cada
periodo, nos periodos t e t + 1. Usando a regra da cadeia
para diferenciar ¢;.1 em relagao a ¢;, teremos que:

F’(kt)dkt —_ dCt ~+ dkt+1 — (1 — 5)dkt

F'(kep1)dkey = deepq + dkey — (1 — 8)dkeyq

Como k; é dado, e além do periodo t + 1 estamos
restringindo o estoque de capital a permanecer inalterado,
somente o estoque de capital no periodo t + 1 pode ser
diferente de antes. Logo, dk; = dk;,, = 0.



Interpretacao da Equacao de Euler

As restricoes de recursos para os periodos t e t + 1 podem
ser reescritas da seguinte forma:

O —_ dCt + dkt+1

F'(kip1)dkeyr = dcgyr — (1 — 8)dkeyq

Essas duas equacdoes podem ser reduzidas a uma equacao
ao eliminar dk;,, para dar uma segunda conexao entre dc;
edcCiiq:



Interpretacao da Equacao de Euler
O — dCt ~+ dkt+1 = dkt+1 — _dCt

F'(kep1)dkey = deepq — (1 —8)dkpyq =

F'(kiy1)dkiys + (1= 8)dkiyq = dceyq =

[F'(ktyq) + (1 =06)]dkiyq = deeyq =
dCeiq

[F'(k¢g1) + (1= 6)]

dkeyq =

lgualando as duas expressdes acima, teremos:



Interpretacao da Equacao de Euler
dCeiq

_dCt —_ ] =

1f'(kerq) + (1 —6)

dceyq = —f"(ker) + (1= 6)]dc,  (2.17)

Interpretacdao: o consumo nao consumido no periodo t é
investido e eleva o produto no periodo t + 1 por meio de
— f'(k;4+1)dc;. Tudo serd consumido no periodo t + 1.

Como nao se deseja aumentar o estoque de capital além do
periodo t + 1, o aumento nao depreciado no estoque de
capital, (1 —48)dc;, pode também ser consumido no
periodo t + 1.



Interpretacao da Equacao de Euler

Isso fornece o aumento total no consumo no periodo t + 1
indicado na equacao (2.17). A utilidade descontada desse
consumo extra medido no periodo t é:

BU (ct41) = —BU (cev1) [f (k1) + (1 = 6)]dc,

dcCty1

Para manter I/; constante, isso precisa ser igual a perda de
utilidade no periodo t. Logo:

U'(c)dcy = BU (e 1) [F (kpyq) + (1= 6)]dc,



Interpretacao da Equacao de Euler

Cancelando dc; em ambos os lados, e dividindo por U'(c;),
nos teremos novamente a equacao de Euler (2.15):

U'(ct)  BU(ceq)F (keyr) + (1 —9)]
= —
U'(ct) U'(ct)
U'(cts1)
U'(ct)

=>1=ﬁ( )[F’(kt+1)+(1—5)]



Interpretacao da Equacao de Euler

Ct+1

Nesse grafico, considera-se consumo “amanha”, consumo
“hoje” e uma restricao de recursos.




Interpretacao da Equacao de Euler

Ct+1

Preferéncias representadas pelas curvas de
indiferencas, que refletem diferentes combinacoes de
consumo hoje e consumo amanha que me dao o
mesmo nivel de utilidade (satisfacdo). Curvas de
indiferencas distantes da origem indicam maior nivel
de satisfacao (utilidade). Os agentes irdo escolher o
ponto A em que se maximiza a utilidade dada a
restricao.

Pontos acima de A apresentam cesta de consumo
“hoje” e “amanha” que nao sao factiveis por estarem
fora de minhas possibilidades em termos de recursos.
Pontos abaixo de A apresentam cesta de consumo
“hoje” e “amanha” que sao factiveis, mas poderia se
fazer melhor em termos de consumao.



Equacao de Euler: aumento de dotacoes

Ct+1 ’

Caso se aumente a restricdo de recursos (por exemplo, ha um
ganho de produtividade que permita aumentar o consumo
amanha e hoje), desloca-se a restricdo para uma nova curva de
indiferenca que apresente um maior nivel de utilidade
(satisfacao), respeitando-se a restricao de recursos.




Equacao de Euler: aumento da taxa de juros

Poupanca hoje significa auséncia de consumo hoje e existéncia
de consumo amanha.
Cisr 1
Mas se poupar tudo e ndo consumir nada hoje, como o retorno do
capital aumentou, havera mais consumo amanha, logo, muda-se
a inclinacao da reta.

Ha dois efeitos: efeito-renda e efeito substituicao.



Equacao de Euler: aumento da taxa de juros

= Efeito substituicao: Ponto A — Ponto B (troco consumo
hoje por consumo amanh3).
= Efeito renda: Ponto B — Ponto C (maior juro, maior

consumo amanh3, posso ndo consumir “tanto assim” amanh3).
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